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Abstract
Purpose – The purpose of this paper is to propose a data prediction framework for scenarios which require
forecasting demand for large-scale data sources, e.g., sensor networks, securities exchange, electric power
secondary system, etc. Concretely, the proposed framework should handle several difficult requirements
including the management of gigantic data sources, the need for a fast self-adaptive algorithm, the relatively
accurate prediction of multiple time series, and the real-time demand.
Design/methodology/approach – First, the autoregressive integrated moving average-based prediction
algorithm is introduced. Second, the processing framework is designed, which includes a time-series data
storage model based on the HBase, and a real-time distributed prediction platform based on Storm. Then,
the work principle of this platform is described. Finally, a proof-of-concept testbed is illustrated to verify the
proposed framework.
Findings – Several tests based on Power Grid monitoring data are provided for the proposed framework.
The experimental results indicate that prediction data are basically consistent with actual data, processing
efficiency is relatively high, and resources consumption is reasonable.
Originality/value – This paper provides a distributed real-time data prediction framework for large-scale
time-series data, which can exactly achieve the requirement of the effective management, prediction
efficiency, accuracy, and high concurrency for massive data sources.
Keywords Prediction, Real-time, Autoregressive integrated moving average, Storm, Stream processing,
Time series
Paper type Research paper

1. Introduction
Recently, with significant advancements in smart meters/sensors and communication
technologies, sensors networks have been widely used in many domains,
such as environmental monitoring (Trilles et al., 2015), traffic analysis (Liu et al., 2006;
Zhao et al., 2015), and electric equipment maintenance (Fonseca et al., 2008; Liu et al., 2012).
All these applications require continuous monitoring and periodic acquisition data
produced by sensors, and therefore will generate variety of time-series data. Time-series
data from complex systems capture the dynamic behaviors and causalities of the
underlying processes and provide a tractable means to predict and monitor system state
evolution (Cheng et al., 2015). Under this circumstance, analyzing and mining of time-series
data becomes a critical issue.

Prediction, as an important aspect of data mining, may help a lot to detect and
alleviate system anomalies by correlating new incoming data with historical observations.
Prediction has been investigated within some fields for time-series data, and benefits are
obtained due to accurate prediction: a new on-condition maintenance module applied in
wind generators to optimize the cycles of production (Fonseca et al., 2008); gaming
workload prediction for good game quality and power savings (Dietrich et al., 2015);
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data from World Wide Web being used to predict nonfarm payrolls, which is considered
as an important indicator of economy (Levenberg et al., 2013); and prediction of the coming
traffic of highway to raise abnormal events alarms and avoid traffic jams (Liu et al., 2006).
However, time-series data prediction is still a major research direction (Fu, 2011;
Kejariwal et al., 2006); actually, forecasting the evolution of complex systems is noted as
one of the ten grand challenges of modern science (Cheng et al., 2015).

A big challenge faced by precise prediction is real-time requirement. In an electric power
system, smart meters send data in a 15-minute interval to the data center (Bose, 2010),
and phasor measurement units can help the operators to measure the values of voltage and
current accurately in very short time intervals (typically 30-60 phasors per second)
(McHann, 2013). Similarly for environment monitoring, equipment abnormal warning,
and other applications, elements of data need to be processed in real time; else one may lose
the opportunity to process them at all (Kejariwal et al., 2006).

Another challenge is the operation of large-scale data sources, because many
applications are rather complex and consist of multiple data streams. In mission operations
for NASA’s Space Shuttle, approximately 20,000 sensors are telemetered once per second to
Mission Control at Johnson Space Center, Houston (Keogh and Smyth, 1997); there are about
50,000 securities trading in the USA, and every second up to 100,000 quotes and trades
(ticks) are generated (Zhu and Shasha, 2002). In 2011, an estimated 493 utilities in the USA
had collectively installed more than 37 million smart meters (Chen et al., 2015); just three
years later, it went up to almost 58.5 million (EIA, US, 2014).

Unfortunately, state-of-the-art technologies are difficult to handle these challenges since
several characteristics are raised:

(1) the number of events in time series can be gigantic, making it difficult to manage
and query data (Cui et al., 2015);

(2) many time-series queries are themselves complex, and involve intricate statistical
analysis such as correlation, e.g., active power and electric current in Power Grid
data; and

(3) time-series data are periodically arrived and real-time response is required;
the previous methods incur a very high update cost for either mining fuzzy
rules or training parameters in different models, which may not work in the
stream scenarios.

In this paper, a distributed real-time data prediction framework for large-scale time-series
data is proposed. This framework employs a stream processing technique and can exactly
achieve the requirement of the prediction efficiency, accuracy, and high concurrency for
massive data sources. Specifically, Power Grid monitoring data is typical time-series data,
the number of monitored sensors is stupendous, and its real-time requirement is relatively
high, as stated above. For this reason, this paper takes the Power Grid data as an example to
establish the framework and conduct experiments. Because the autoregressive integrated
moving average (ARIMA) prediction algorithm has the advantages of broad applicability,
short training time consuming, relatively high prediction accuracy, etc., which can support
the basic properties of Power Grid data and fulfill the requests of various types of data
modeling, it is adopted in this paper.

The contributions of the paper are as follows:

(1) several prediction algorithms are compared and a fast self-adaptive algorithm is
adopted to fit a large number of data sources;

(2) an effective time-series data storage system is built based on HBase, a database
implemented on top of the Hadoop stack;
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(3) a real-time and parallel prediction framework is realized by Storm, which is one of
the most popular stream processing systems; and

(4) a proof-of-concept testbed is illustrated to verify the proposed framework.

The remainder of this paper is organized as follows: Section 2 presents an overview of
related works about time-series prediction; a self-adaptive algorithm is adopted in Section 3
to fit a large number of data sources; Section 4 contains our real-time and parallel calculation
framework; Section 5 illustrates several experiments; and then discussion and conclusion
are presented in Section 6.

2. Related works
2.1 Prediction algorithms
Predicting unknown values of time series is defined as follows: given a series of
consecutive values {Xt}¼ x1, x2,…, xt, and the next value xt+1, even xt+2, xt+3,… can be
predicted through some specific algorithms. A lot of work on time-series prediction
has been conducted to date. Related works can be divided into data mining approaches
(Cheng et al., 2015; Dietrich et al., 2015; Fonseca et al., 2008; Velasquez-Henao et al., 2012),
fuzzy rules (Policker and Geva, 2000), and similarity methods (Lian and Chen, 2008;
Shibuya et al., 2009).

For data mining techniques, Wagner et al. (2011) developed a system for a large number
of time series to forecast on the order of 105, which made use of a novel hybrid model based
on the AR(7) model for time-series modeling, analysis, and prediction; practical applications
had proved it to be robust. However, the system was designed without consideration of the
real-time requirement for abundant applications. Fonseca et al. (2008) proposed an
on-condition maintenance approach for wind generators, in which the prediction models
used regression techniques based on SVR, ARMA, and ARIMA. Dietrich et al. (2015)
searched time-series models for workload prediction for gaming applications and other
remarkable works, prediction algorithms like PID, LMS, and ARMA, all revealed with very
encouraging results. Cheng et al. (2015) reviewed the recent developments in nonlinear and
non-stationary time-series forecasting and provided a comparative evaluation of the
performance of alternative models in real-world application case studies, especially
where traditional models (ARMA and KF) failed to capture the system evolutions.
Velasquez-Henao et al. (2012) proposed a modification of the dynamic architecture for
artificial neural networks (ANNs) (DAN2) model and proved it outperformed the original
DAN2 model, which performed significantly better than traditional ANNs.

The traditional fuzzy prediction algorithm cannot guarantee the prediction accuracy if
the time-series’ statistics are non-stationary. As an improvement, Policker and Geva (2000)
used the existing fuzzy clustering algorithm, the unsupervised optimal fuzzy clustering
algorithm, and the deterministic annealing approach to classify a large set of time series
such that the series in each cluster were close and their temporal probabilistic behavior
was similar. As a second step, the proposed algorithm predicted the future data from a
mixture probability distribution function. In particular, for each future value, the fuzzy
membership of each cluster was calculated, and the results were combined to produce an
estimate of this future value.

For similarity methods, Shibuya et al. (2009) proposed a new method for quantifying the
strength of the causal influence from one time series to another, whether each of two
time series was symbolic or numerical. The proposed method could be used to predict one
series depending on the strength of causality with another series. Lian and Chen (2008)
proposed three approaches, polynomial, discrete Fourier transform, and probabilistic,
to predict the unknown values that had not arrived at the system and answered similarity
queries based on the predicted data.
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Table I contrasts different prediction algorithms in four aspects including training
difficulty, applicability, operation efficiency, and accuracy. As we can see, the ARIMA
model has the advantages of broad applicability, short training time consuming, relative
high prediction accuracy, and so on; thus it is adopted as the prediction algorithm in our
proposed framework.

2.2 Stream processing frameworks
2.2.1 Storm. Storm (ASF, 2016d) is a distributed real-time computing framework that
can handle unbounded data stream easily and reliably until it is artificially stopped.
As a high-reliability flow computing framework, Storm is an open source by Twitter.

Storm has its own terminology, starting with the concept of Topologies. A Topology
defines the way, or workflow, in which a problem will be processed. It is similar to a job in
Hadoop (ASF, 2016a). However, Hadoop jobs will have an end, while the Topology will
always run because there is a need for continuous computation. Figure 1 illustrates a
Topology as the workflow of Spouts and Bolts. The Spouts handle the insertion of data
tuples into the Topology and send each of these tuples to Bolts. They thus connect the input
stream and send the values to the Bolt that is responsible for the stream processing.
Each Bolt processes the streams that it receives from the Spout. It applies any particular
procedure to generate its output stream. The actual improvement of Storm compared to
other solutions is that these operations can be parallelized. Parallelization is handled on the
level of a single Bolt and the parallelization factor is defined as part of the Topology.

2.2.2 Spark Streaming. Spark Streaming (ASF, 2016c) is another famous stream
processing framework, which allows scalable, high-throughput, fault-tolerant stream
processing of live data streams. Data can be ingested from many sources like Kafka, Flume,
Twitter, Kinesis, or plain TCP sockets and be processed using complex algorithms
expressed with high-level functions like map, reduce, join, and window. Finally, processed
data can be pushed out to file systems, databases, and live dashboards. Spark Streaming
provides a high-level abstraction, called discretized stream or DStream, which represents a

Algorithms Training difficulty Applicability Operation efficiency Accuracy

ARIMA Easy Wide High Medium
ANN Medium Wide Medium Medium
DAN2 Medium Wide Medium High
Fuzzy algorithms Easy Medium Medium Medium
Similarity methods Hard Medium Low Medium

Table I.
Contrast of common
prediction algorithms

Spout

Bolt

Bolt

Bolt

Bolt

Figure 1.
An example of
Storm, its Topology
includes one Spout
and four Bolts
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continuous stream of data. DStreams can be created either from input data stream from
sources such as Kafka, Flume, and Twitter, or by applying high-level operations on other
DStreams. More details about Spark Streaming are presented by Drusinsky (2016).

3. Data prediction model
Since large-scale time-series data prediction requires frequent model training over time,
a general model which can update itself, capture, and predict a wide variety of time series
without human intervention is necessary. Additionally, the computation time to generate
forecasts should be as short as possible; in other words, efficiency is a significant issue.
Among the existing prediction algorithms, as shown in Table I, the ARIMA model has
the advantages of broad applicability, short training time consuming, and relatively high
prediction accuracy. Thus, we use ARIMA as a prediction algorithm in this work.

3.1 Brief introduction of ARIMA
ARIMA is a widely used method on real-time predication. A time series {Xt} which satisfies
ARIMA ( p, d, q) is shown in the following equation:

Xt ¼
y Bð Þet
j Bð Þrd : (1)

In Equation (1), the symbol ∇ refers to the difference operator and ∇d¼ (1−B)d, while d is
the difference order. B indicates the delay operator and satisfies BXt¼Xt−1, φ(B) and θ(B)
express the reversible operator and stationary operator, and they are satisfied, respectively,
with the following two equations:

j Bð Þ ¼ 1�j1B�j2B
2� � � ��jpB

p: (2)

y Bð Þ ¼ 1�y1B�y2B
2� � � ��yqB

q: (3)

In Equations (2) and (3), p and q are models’ orders, and φ and θ are the corresponding
parameters of the models. εt is zero mean white noise sequences. The following equation is
adopted to predict the value of time series at the next moment:

Xtþ 1 ¼
y Bð Þetþ 1

j Bð Þrd : (4)

In a time-series analysis, the most crucial step is to identify an appropriate structure and
estimate the parameters of the ARIMAmodel for a given time-series data. Model identification
can be divided into three steps (Box et al., 2013). The first step is to analyze the observed
time-series data and determine the required type of transformation (differencing and/or power
transformation, if necessary). The second step is to identify the corresponding ARIMA model
structure by comparing the estimated autocorrelation coefficient (ACC) and partial
autocorrelation coefficient (PACC) of the transformed data with the theoretical ACC and
PACC. The third and last step is to determine the deterministic trend term such that the mean
of the simulated time-series data is equal to the mean of the observed time-series data.

Once the model structure is identified, the model parameters can be estimated by using
the maximum likelihood estimator. A diagnostic check is then made on the resulting model.
This can be done by using the ACC and PACC of the residual where both have to be within
the critical limits for time lags different from 0. We refer the readers to Box et al. (2013)
for more details about the parameters’ determination of the ARIMA model.
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3.2 Pre-build model of time-series data
Although the time-series data model of any single data source is not immutable, however,
within a specific time window, data features keep steady. Taking the data monitored by
various sensors in Power Grid as an example, we can obtain three kinds of different rules:

(1) Fitted by ARIMA ( p, q), amplitude variation of data is small; usually this series is a
stationary sequence, such as tension of wire and C2H2 in oil.

(2) Fitted by ARIMA ( p, d, q), data rising or falling slowly, which can be transformed
into a smooth sequence and then fitted by ARIMA ( p, q), for example, CO and CO2 in
oil, currents of wire, etc.

(3) Fitted by ARIMA ( p, ds, q), data is changed periodically; similar data reappear
after interval s, for instance, temperature of oil, temperature of wire, active power,
and so on.

Based on this premise, we can use historical data to estimate the parameters of each time
series, and preserve in advance. This set of parameters can be used repeatedly for data
prediction at a fixed time interval. As a result, the training speed is improved and the
prediction time is reduced.

4. Processing framework
4.1 Overall design of the framework
Time-series data are usually continuous production at a fixed interval, e.g., Power Grid data
center collected data from smart meters in every 15 minutes (Bose, 2010). It will significantly
benefit the actual analysis if prediction data of time t, labeled as Pt, is ready when actual
measurement data of time t,Mt, arrives. This inspires the original design of our framework,
which is shown in Figure 2.

Suppose we use last N values (Vt−N, Vt−N+1,…,Vt−1) in time series to predict the next
value. At t−1 moment, Vt−N, Vt−N+1,…,Vt−1 are ready and fed into the ARIMA model to
forecast Pt. Then, at t moment, afterMt arrives, Pt andMt are compared to detect abnormal
data, and the data governance method is used to determine a value Vt as the accepted value
at t moment. The above process is an iterative procedure as time goes by. So Storm is
introduced into our framework to undertake this mission, due to its reliably performance on
continuous computation for unbounded data streams.

timeline

ARIMA 
Algorithm

Current moment  t

Next moment   t+1

predict

last N values

compare, analyze,
determine accepted value

… … Pt

… … Pt

Mt

Vt–N

Vt–N

… … Vt…

last N values

Pt +1

predict

… Vt–N+1

Vt–N+1

Vt–N+1

Vt–N+1

… Vt –1

Vt –1

Vt –1

Vt –1

Vt… Pt +1

Mt +1

Last moment   t –1

Pt Mt Vt
Predicted value

at t moment
Measured value

at t moment
Accepted value

at t moment

1

2

Note: This process is only for a single data sources

Figure 2.
Overall design of
this framework
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4.2 Storm-based platform
In our framework, the task of Storm is reading massive monitoring data, coordinating the
models’ training of different time series, real-time analysis of the result of prediction, storing
results, and so on. Figure 3 shows Topology of this framework, which is made up of
distributed concurrent execution of multiple Spouts and many sets of Bolt, and each Bolt
group contains pretreatment, ARIMA prediction, etc. The tuples launched by Spout are
key-value pairs which are composed of data source type and several time-series data in
recent moments. Here, we choose Group by Field as a grouping strategy, to render each Bolt
group only receive certain specific data sources for processing. For example, a group of Bolt
is only in charge of voltage sensors as data sources and ignore other data. The significance
of adopted grouping strategy is to divide massive and various variety of data sources into
multiple sets of Bolts, using concurrent processing to speed up prediction velocity and raise
convenience of managing considerable data sources.

4.3 Time-series data storage model based on the HBase
The traditional time-series data storage model is relatively simple, which contains three
columns, as represented in Table II. In the traditional model, each record stands for the
measured value/state of one measure unit (sensor) in one moment.

Since the number of measure units can be stupendous, and measured interval is bitty,
vast data needs to be written into the database continuously. This is an extremely heavy
burden, and might influence the performance of data reading. Besides, the time measure
units gather data that is synchronous in practice. In this case, the traditional model always
stores a series of timestamps, which occupy mickle storage space.

Our framework uses HBase to simulate data sources. HBase (ASF, 2016b) is an open
source project of Apache, using HDFS as its file system. It is very suitable for the sequential
data because of the flexible, loose storage structure.

To facilitate the management of massive amounts of data, we design the data
storage structure based on HBase shown in Figure 4, which contains an index table and
some data tables.

Spout

Spout

Pretreatment
Bolt

ARIMA
prediction Bolt

Error Calculation 
Bolt Storage Bolt

Pretreatment
Bolt

ARIMA
prediction Bolt

Error Calculation
Bolt Storage Bolt

Pretreatment
Bolt

ARIMA
prediction Bolt

Error Calculation
Bolt Storage Bolt

Pretreatment
Bolt

ARIMA
prediction Bolt

Error Calculation
Bolt Storage Bolt

...

Spout

... ... ... ...

Figure 3.
Topology of storm
in this framework

Timestamp Name of measure
unit

Value/state of measure
unit

Table II.
Traditional storage

model for
time-series data
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Basic information of data sources and index information are recorded in the index table,
including name of the monitoring sources (name), the upper and lower bounds
of the error warning threshold value (Threshold Upper and Lower Bound), applicable
fitting model (applicable ARIMA model) and so on, and the index information, including
the table number (Table ID) of storing the monitoring data and the column number
(Column ID) in the table.

Each column of data table represents the time-series data which is collected by one data
source. Its table number and column number are corresponding to the index information
(Table ID and Column ID) in the index table. The key of data table is the timestamp when
time-series data is gathered, to simulate the time series by means of line growth. Actually,
real-time data of each data source will be written into HBase at a fixed interval.

Compared to the traditional storage model, only one record is needed for all measured
values at the same moment in the proposed model, which decreases the load and increases
the use efficiency of the database. Due to the specific feature of HBase, multi-versions of
data are stored in the same cell, which facilitates the management of data quality since it
needs original data and fixed data both.

4.4 Real-time framework for distributed time-series prediction
In order to meet the demand of real-time and large-scale time-series prediction, we design a
distributed framework based on Storm, using HBase as a data source. Figure 5 shows this
diagram. Spout and Bolt in Storm are responsible for data collection and processing,
respectively. Due to the huge number of data sources, we use multiple Spouts to read data
parallel and ensure that each Spout reads the same number of data sources, avoiding the
emergence of the hot spots, which means several Spouts are much busier than others,
and thus might lead to a bottleneck. According to Topology as shown in Figure 3, each Bolt
group only selects a specific type of data sources from all Spouts to receive, process,
and analyze. The mechanism of Spout and Bolt will be demonstrated in detail below.

4.4.1 The mechanism of Spout. Spout is an active role, which communicates with HBase
by calling the method nextTuple( ) to read data constantly, make up different data sequences
according to data sources, and then send them to Bolt for later processing. The procedure of
Spout is shown in Figure 6:

• Step 1: initialize the running environment, connect HBase, and iterate over the
collection of data sources which are collected by current Spout. Then look up Table
ID and Column ID corresponding to each data source according to the index table of
HBase. After that readN recent data (as shown in Figures 2 and 4) from the data table
by Table ID and Column ID, and build the initial time series in the form of a linked list

Row Key
Basic Information

Table ID Column IDApplicable 
Model

ID
1

……

……

IDm

IDn

TABLE1

……

……

TABLEp

TABLEq

1

X

Y

……

……

……

……
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1

AMm

AMn

Data Source1

……

……

Data Sourcem

Data Sourcen

Name Threshold
Upper Bound 

……

……

TUB1

TUBm

TUBn

Threshold
Lower Bound 

……

……

TLB1

TLBm

TLBn

Index Information

… …

Row
Key

……

…

Table ID1

time1

time2

timeN

Column Family
Column 

ID1
data11

data12

data1N …

Column 
IDX

dataX1

dataX2

dataXN

…

…

Column 
IDY

dataY1

dataY2

dataYN

Row
Key

……

…

Table IDp

time1

time2

timeN

Column Family
Column

ID1

data11

data12

data1N …

Column
IDX

dataX1

dataX2

dataXN

…

…

Column
IDY

dataY1

dataY2

dataYN

Row
Key

……

…

Table IDq

time1

time2

timeN

Column Family
Column

ID1

data11

data12

data1N …

Column
IDX

dataX1

dataX2

dataXN

…

…

Column
IDY

dataY1

dataY2

dataYN

Figure 4.
Time-series data
storage structure
based on HBase
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noted as Link, where N means the sample size of historical data to predict the next
value (same with N in Section 4.1). In order to speed up reading efficiency,
the framework will cache Table ID and Column ID in the corresponding Spout’s
memory to reduce index time;

• Step 2: build the serial Link; if its length reaches N, then turn to step 3, otherwise skip
to step 4;

Data processing 

...

Data collection

...

Data source

HMaster HReigonServer

...

HReigonServer HReigonServer

Data stream

Data stream

Spout Spout Spout Spout

Bolt Bolt Bolt Bolt

Figure 5.
Diagram of

prediction framework

Begin

Initialization

Send to Bolt

Wait the arrival of next 
moment’s data and read it

Build data sequence

ne
xt

T
up

le
()

Sequence length=N?

Y
N

Figure 6.
Procedure of Spout
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• Step 3: launch Link in the form of a tuple to the Bolt according to the grouping
strategy; and

• Step 4: read new data from HBase after the arrival of next moment’s data, and then go
to step 2.

Steps 2-4 constitute the method nextTuple() of Spout. In the process, two kinds of methods to
build a data sequence are shown as follows (corresponding to Figures 7(a) and (b)):

(1) in initialization, if the length of data sequence is not up toN, use the tail-plug method
to add new data to the end of the list; and

(2) within running processing, when the length of the data sequence equals N, use the
tail-plug method to add new data at the end of the list, and delete the first element of
the list at the same time.

4.4.2 The mechanism of Bolt. This framework uses multiple sets of Bolts which receive
tuple from Spout. Each group of Bolts includes operation such as preprocessing, prediction,
error calculation, etc. Bolt is a passive role which calls the execute() function after receiving
message, and handles received tuples according to the established grouping strategy.

Each group of Bolts first executes pretreatment operation including tuple splitting,
formatting by the requirement of prediction algorithm, and so on. Second, the ARIMA
algorithm in Section 3.1 is embedded in execute(). After Bolt receives the data sequence from
the pretreatment stage, ARIMA is called automatically to estimate the data of the next
moment, thus predicting the time sequence in real time. Then Bolt trains the model
according to the type prestored in the index table. When the default model type does not
meet the characteristics of this sequence, Bolt also provides a model switch function until it
gets a best-fitted one, which could effectively avoid blindness and enhance the efficiency of
prediction. It is necessary to store forecasting data temporarily before real measurement
data of the next moment being collected. Then Bolt sends two values together to the error
calculation Bolt and analyze the results. Third, the error analysis Bolt calculates the forecast
error according to the actual data and forecast data which are sent by prediction Bolt, and
refers the error threshold been recorded in index table to decide whether to warn. Finally,
storage Bolt stores results of prediction, error information, and warning information, which
would be convenient to further analyze. Process flow of Bolt group is shown in below.

Value Value Value Value

New Value

tail

… …

head

Length<N

(a) 

Value Value Value Value

New Value

old head

… …

old tail

Length=N

delete

new head

Value

new tail

(b) 

Notes: (a) Initialization method of building data

sequence; (b) the method of building data sequence

while running

Figure 7.
The method of
building data
sequence in two cases
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Pretreatment bolt
Receive_tuples();//receive the tuples sent by Spout
Process_tuples();//process tuples to adapt ARIMA algorithm

ARIMA prediction bolt
Train_model();//train model as pretreated
While (!pass_diagnosis) {//check the model whether is suitable or not

Adjust_model();//adjust model
Train_model();//train model

}//until the model is suitable
Predict();//predict the data of next moment

Error calculation bolt
Error_calculation();//according the prediction data of last moment and the actual data
of current moment to calculate error
if(errorW threshold) //error is over threshold

alert();// warning
Storage bolt

Save_results();//store the result of prediction, predict error, warning information
and others

5. Experiments
In order to verify the effectiveness of the proposed framework in practical application,
we deploy a proof-of-concept cluster which contains nine nodes and each node is based on
the low-cost credit-card-sized single-board PC (Raspberry PI, model 2B, hardware
configuration in Table III) (RaspberryPIFoundation, 2015), as shown in Figure 8.
Since Storm is architected as a Master-Slave structured system, in our proof-of-concept
cluster, we choose one to be regarded as Master and the rest as Workers. Considering the
reusability of the cluster for HBase, we place HMaster (in HBase) to the same node with
Master, and HRegions (in HBase) to the same nodes with Workers.

The experiment selects 500 monitoring sensors from a city Power Grid as actual data
sources; most of them are measured for Electric Current, Active Power and Reactive Power

Type Model/Parameter

CPU ARM Cortex-A7 (900MHz, 4cores)
RAM 1 GB
Hard-disk 64 GB
Operation system Linux (CentOS 7 for ARM)
Network 100 M bps

Table III.
Hardware

configuration

Figure 8.
A proof-of-concept

demonstration
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in a transformer. Measured data is collected in every 5 minutes. We divide all data
sources into ten groups, and each group contains 50 sources. Also, we set ten Spouts and
ten Blots in Storm.

Our experimental cluster runs two days’ continuous measured data, so the amount of
value to be predicted for each measurement sensor is: (2× 24× 60)/5¼ 576. Experimental
evaluation includes six parts, which are the influence of sample size on the prediction result,
the accuracy analysis, the processing efficiency of Spout and Bolt in Storm, the resource
consumption of servers, effect of the number of nodes and performance comparison between
different algorithms.

5.1 The influence of sample size on the prediction result
Section 4.4.1 points out that each Spout forms a time sequence by reading theN latest values
and launches it to Bolt for prediction. Since the ARIMA algorithm uses historical data to
predict, the bigger the sample size (N in this paper), the better is prediction result. However,
it is not realistic in practical applications. This section will focus on the impact of sample
size, i.e., N, on the prediction result, in order to select the best N for subsequent experiments.
In total, 20 monitoring sources are randomly selected from 500 and divided equally into five
groups, and then the mean relative error (MRE) is calculated (see Equation 6); results are
shown in Figure 9.

It can be concluded from Figure 9 that the prediction error of each group is gradually
reducing while N increases, and when N goes up to 40, errors tend to be stable.

To avoid the uncertainly of data distribution, we repeat this process ten times, and each
time, we randomly select 20 monitoring sources and divide them equally into five groups,
and then find best N in accordance with MRE. Table IV shows N of each time.

The average of best N is 39.5, as revealed in Table IV. In order to reduce the calculating
time while ensuring the accuracy of prediction, in this paper, we adopt a sample size of
40 to carry out follow-up time-series data prediction.

No. 1 2 3 4 5 6 7 8 9 10 Avg.

Best N 40 40 35 40 45 40 35 40 35 45 39.5
Table IV.
Best N of each time
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5.2 Accuracy analysis
In order to demonstrate the prediction effect intuitively, we randomly select six different
data sets, including the three groups: electric current, reactive power and active power,
to compare disparity between prediction and actual data. The results of three groups are
illustrated in Figure 10. As we can see from the figure, the predicted values are basically
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distributed near the actual ones; in particular, when the original data show a clear trend,
e.g., active power, the predicted values are almost coincident with actual values.

In all measured sources, the numbers of active power, reactive power and electric current
are 220, 180 and 100, respectively. According to the type of measured sources, prediction
results are evaluated by two specific indexes, average absolute error (MAE) and average
relative error (MRE), as shown in the following equations:

MAE ¼ 1
n

Xn

i¼1

ŷi�yi
�� ��: (5)

MRE ¼ 1
n

Xn

i¼1

ŷi�yi
yi

����

����: (6)

Among them, ŷi means predicted value and yi means actual value. Table V shows statistics
on MAE and MRE. It can be concluded that MAE and MRE of each type are within a
reasonable range.

In this experiment, the calculation of the predicted value and the comparison
between forecast and actual values are performed simultaneously (shown in Figure 2).
Based on previous experience or relevant statistical data, threshold for each data
source is set artificially, which is displayed in Figure 11. The red line represents the
threshold, the blue cross represents error between the predicted value and the actual
value. The cross within the red lines indicates this is normal data. Else, if the error is
larger than the threshold, it is likely to be a suspicious data, and a number of consecutive
suspicious data will launch early warning. In practical applications, this design is
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Figure 11.
Real-time error
analysis

MAE MRE/%
Measured source type Max. Min. Avg. Max. Min. Avg.

Active power 3.38 0.26 1.37 7.26 1.98 3.95
Reactive power 2.32 0.11 0.98 12.51 3.54 8.51
Electric current 2.59 1.17 1.24 10.72 7.96 8.56

Table V.
Prediction error
statistics
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helpful to reduce the workload in equipment state evaluation, especially in real-time
condition-based maintenance of equipment.

A brief description should be given for the choice of the recognition method of abnormal
data. High dependability on human factors makes manual selection of threshold
unsustainable, and thus several related automatic methods are introduced (Marczak and
Proietti, 2016). Z-scores, modified z-scores, box plots, Grubb’s test, Tietjen-Moore test
exponential smoothing, moving window filter algorithm, etc. are widely used methods for
outliers’ detection. Furthermore, the performance of the interquartile range is outstanding
due to the robustness. Actually, abnormal data detection should be carried out according to
the physical meaning represented by the data itself. If the outlier point represents a new
data trend, it should be retained. Therefore, complementing automatic methods and manual
methods with each other could be an applicable solution.

5.3 Processing efficiency of Storm
In our experiment, Spout reads the database and composes a tuple for each data source.
Bolts set receives tuple and calls the corresponding ARIMA algorithm to predict results,
calculate error, and store results. Times required by both Spout and Bolts sets are measured,
respectively, as shown in Table VI.

As Table VI shows, Spout’s running time is relatively longer than that of Bolts set,
which is approximately five seconds. That is because, on one hand, Spout needs to connect
the HBase and index basic information of data sources, but it may exist in different
HRegion servers in HBase, and on the other hand, the performance of low-cost
single-board PC (Raspberry PI) is not outstanding enough. Meanwhile, Bolts set’s
processing speed is very fast which is sufficient for massive data processing. Overall,
compared to the time interval of measurement data acquisition (by every five minutes
even longer), the processing time of Spout and Bolts sets is almost negligible, and the
processing efficiency is satisfactory.

5.4 Resource consumption
During experiments, the CPU and memory usage rate of master and eight workers are
monitored synchronously, as shown in Figure 12.

All eight workers’ CPU usage rate ranges from 15 to 20 percent and master’s usage rate
is even as low as about 0.5 percent. It is because within executing process, master node is
only responsible for monitoring the running status of each worker through zookeeper and
assigning tasks according to workload. Concretely, master does not execute any prediction
task; the specific processing work is completed by worker nodes, so the CPU usage rate of
each worker is much higher than master. The situation of cluster’s memory usage is quite

Group Spout average processing time/ms Bolts set average processing time/ms

1 4,985.1 13.0
2 4,970.4 12.2
3 4,980.4 10.9
4 5,171.7 12.3
5 5,080.3 12.6
6 5,179.9 11.8
7 5,137.8 11.8
8 5,063.9 12.8
9 5,045.0 11.7
10 5,032.7 12.7
Avg. 5,064.7 12.2

Table VI.
Processing time of
Spout and Bolts set
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similar with CPU usage, almost all workers’ memory usage rate are more than 75 percent,
but master’s is even below than 31 percent. Overall, the performance of each node in the
Storm cluster is rather stable, and resource consumption is relatively reasonable.

5.5 Effect of the number of nodes
We analyze the performance of this framework under different numbers of worker nodes.
Since the accuracy is only related to the prediction algorithm, we focus on processing time
which is spent on both Spout and Bolts sets. Speedup ratio (SR) is adopted to evaluate the
parallel efficiency, as shown in the following equation:

SR ¼ T1=Tn (7)

where Tn means the time taken by n nodes and T1 means the time spent on a single
machine.
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Figure 13 shows the SR of Spout, Bolts set and ideal curve, in which we can observe that
(1) SR of Spout is rather gentle, stays around 1 and almost no fluctuations occurs, and (2) SR
of Bolts set is relatively optimistic, with almost linear growth at the beginning; however,
with the increase of worker nodes, SR tends to be stable.

This primarily results from the properties of Spout and Bolt. As stated above, Spout is
responsible for reading data, whereas Bolts set is in charge of processing data. In this
experiment, the amount of data needed to read is not large, so Spout’s principal working
time is to establish connection with HBase and retrieval data; thus the number of nodes will
not impact the running time of Spout significantly. Nevertheless, to Bolts set, the larger the
number of clusters, the more nodes can be distributed to vast time-series data sources for
parallel processing, and then the entire computing task will be completed faster. When the
number of nodes increases further, communication and scheduling become bottlenecks that
affect parallel efficiency. This is also the reason why SR tends to be smooth when seven,
eight nodes occur.

5.6 Performance comparison
We implement ANN on our Storm-based platform as the prediction algorithm, and compare
its performance with this proposed framework in several aspects. Specially, general
regression neural network (Al-Zahrani and Abo-Monasar, 2015), a general kind of ANN,
is adopted, which has an input layer, a hidden layer and an output layer. As the same with
ARIMA, we use 40 sample data to predict next one; hence, the input layer holds 40 neurons.
Besides, the hidden layer has typically ten neurons in this experiment.

From Sections 5.3 and 5.5, it is concluded that Spout’s working time is relatively
stable, no matter how many worker nodes are or which prediction algorithm is. Thus,
the prediction accuracy and running time of Bolts set are chosen to compare these two
solutions. In this experiment, we repeat each prediction algorithm ten times and select
ten active power sources, ten reactive power sources, and ten electric current
sources randomly at each time, to compare accuracy and efficiency, which are shown in
Figures 14 and 15, respectively.

Two prediction algorithms, ARIMA and ANN, show no appreciable difference in
accuracy, which is evaluated by MRE. The only dissenting issue is that ARIMA is a bit more
stable. However, in efficiency aspect, the ARIMA algorithm shows an outstanding effect;
it takes only 1/13th to 1/11th of time spent by ANN. There are two reasons which lead to this

8
SR of Spout
SR of Bolts set
Ideal SR

7

6

5

4

3

2

1
1 2 3 4 5

Number of Worker Nodes

S
pe

ed
up

 R
at

io
 (

S
R

)

6 7 8

Figure 13.
SR of Spout
and Bolts set

161

Real-time data
prediction
framework



www.manaraa.com

result, one is that the training process of ANN itself is complex and time consuming,
and another is that the applicable model of ARIMA is prestored in the designed data
structure, to a great extent, saving the training time.

6. Conclusions
In this paper, we proposed a framework based on Storm and the ARIMA algorithm to
predict and analyze large-scale time-series data in real time, which includes the following
characteristics:

(1) Real time and accuracy. Storm is a distributed real-time computing framework that can
quickly train the ARIMA model for prediction, which ensures a fast processing speed
to implement real-time processing in terms of predicting time-series data. Furthermore,
the result shows that ARIMA has high accuracy in short-term prediction.

(2) High storage efficiency. A novel storage structure for time-series data is designed
based on HBase, which decreases the workload and increases the use efficiency of
database. Multi-version of data is able to be stored in the same cell, which facilitates
the management of data quality.

(3) Parallel processing for huge amounts of data sources. It can fulfill the demand of
parallel processing for vast time-series data sources with a few cluster resources by
rationally allocating the number of Bolts and Spouts in Storm.

(4) Error real-time analysis and early warning. Trigger early warning once there is a
persistence deviation with preset threshold, which can effectively reduce staff workload.

A proof-of-concept cluster is set to verify the performance of the proposed framework in six
aspects, including the influence of sample size on the prediction result, the accuracy
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analysis, the processing efficiency of Spouts and Bolts in Storm, the resource consumption
of servers, effect of the number of nodes and performance comparison between different
algorithms. Experimental results demonstrate that the proposed framework of time-series
data prediction based on Storm and the ARIMA algorithm achieves a rather ideal effect in
terms of prediction accuracy and processing speed, which meets requirements in practical
applications. Further works will focus on: optimization for Storm, including load balancing,
memory optimization and cluster optimization; exploring the method to estimate better
parameters of the ARIMA model; optimization for algorithm, since there is still a bottleneck
on long-term forecast using ARIMA. Referring to different time series, a combination of
several algorithms, such as neural network and ARIMA, is worth studying in order to
improve precision of prediction.
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